

Experiment 09

DC Analysis of Junction Field Effect Transistor (JFET)

Objective:

To understand Junction Field Effect Transistor (JFET) and its output characteristics.

Introduction:

The Junction Field Effect Transistor, or JFET, is a voltage controlled three terminal unipolar semiconductor device available in N-channel and P-channel configurations In the *Bipolar Junction Transistor* topic, we saw that the output Collector current of the transistor is proportional to input current flowing into the Base terminal of the device, thereby making the

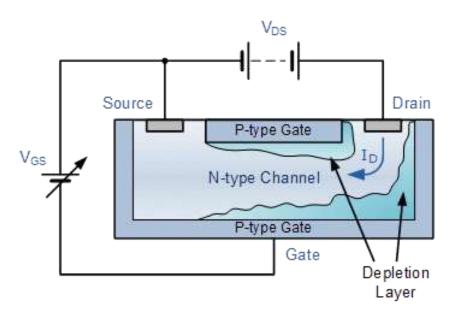


Figure 1

11.1: N-Channel JFET

bipolar transistor a "CURRENT" operated device (Beta model) as a smaller current can be used to switch a larger load current. The **Field Effect Transistor**, or simply **FET** however, uses the voltage that is applied to their input terminal, called the Gate to control the current flowing through them resulting in the output current being proportional to the input voltage. As their operation relies on an electric field (hence the name field effect) generated by the input Gate voltage, this then makes the **Field Effect Transistor** a "VOLTAGE" operated device.

The **Field Effect Transistor** is a three terminal unipolar semiconductor device that has very similar characteristics to those of their *Bipolar Transistor* counterparts. For example, high efficiency, instant operation, robust and cheap and can be used in most electronic circuit

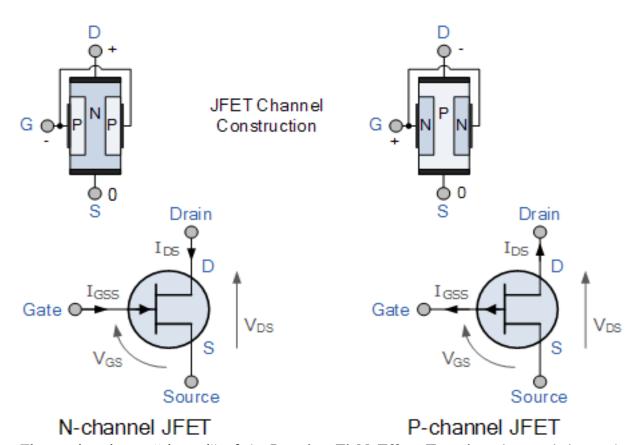
Figure 11.2: Typical Field Effect Transistor

applications to replace their equivalent bipolar junction transistors (BJT) cousins. The **Junction Field Effect Transistor** (JFET) has no PN-junctions but instead has a narrow piece of high resistivity semiconductor material forming a "Channel" of either N-type or P-type silicon for the majority carriers to flow through with two ohmic electrical connections at either end commonly called the Drain and the Source respectively. JFET is an essential component for precision level voltage operated controls in <u>analog electronics</u>. We can use JFET as voltage-controlled resistors or as a switch, or even make an amplifier using the JFET. It is also an energy efficient version to replace the BJTs. JFET provides low power consumption and fairly low power dissipations, thus improving the overall efficiency of the circuit. It also provides very high input impedance which is a major advantage over a BJTs.

Basic Types of JFET

There are two basic configurations of junction field effect transistor, the N-channel JFET and the P-channel JFET. The N-channel JFET's channel is doped with donor impurities meaning that the flow of current through the channel is negative (hence the term N-channel) in the form of electrons.

Likewise, the P-channel JFET's channel is doped with acceptor impurities meaning that the flow of current through the channel is positive (hence the term P-channel) in the form of holes. N-channel JFET's have a greater channel conductivity (lower resistance) than their equivalent P-channel types, since electrons have a higher mobility through a conductor compared to holes. This makes the N-channel JFET's a more efficient conductor compared to their P-channel counterparts. We have said previously that there are two ohmic electrical connections at either end of the channel called the Drain and the Source. But within this channel there is a third

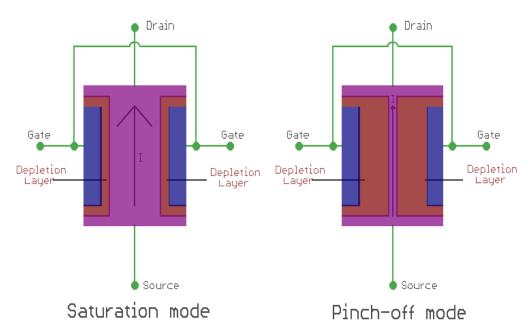


electrical connection which is called the Gate terminal and this can also be a P-type or N-type material forming a PN-junction with the main channel. The relationship between the connections of a junction field effect transistor and a bipolar junction transistor are compared below.

Comparison of Connections between a JFET and a BJT

Bipolar Junction Transistor (BJT) Field Effect Transistor (FET)		
Emitter (E)	>> Source (S)	
Base (B) >> Gate (G)		
Collector (C)	>> Drain (D)	

The symbols and basic construction for both configurations of JFETs are shown below.


The semiconductor "channel" of the **Junction Field Effect Transistor** is a resistive path through which a voltage V_{DS} causes a current I_D to flow and as such the junction field effect transistor can conduct current equally well in either direction. As the channel is resistive in nature, a voltage gradient is thus formed down the length of the channel with this voltage becoming less positive as we go from the Drain terminal to the Source terminal.

The result is that the PN-junction therefore has a high reverse bias at the Drain terminal and a lower reverse bias at the Source terminal. This bias causes a "depletion layer" to be formed within the channel and whose width increases with the bias. The magnitude of the current flowing through the channel between the Drain and the Source terminals is controlled by a voltage applied to the Gate terminal, which is a reverse-biased. In an N-channel JFET this Gate voltage is negative while for a P-channel JFET the Gate voltage is positive. The main difference between the JFET and a BJT device is that when the JFET junction is reverse-biased the Gate current is practically zero, whereas the Base current of the BJT is always some value greater than zero.

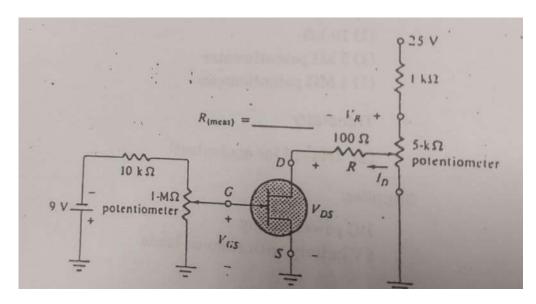
Working of JFET

One best example to understand the working of a JFET is to imagine the garden hose pipe. Suppose a garden hose is providing a water flow through it. If we squeeze the hose the water flow will be less and at a certain point if we squeeze it completely there will be zero water flow. JFET works exactly in that way. If we interchange the hose with a JFET and the water flow with a current and then construct the current-carrying channel, we could control the current flow. When there is no voltage across gate and source, the channel becomes a smooth path which is wide open for electrons to flow. But the reverse thing happens when a voltage is applied between gate and source in reverse polarity, that makes the P-N junction reversed

biased and makes the channel narrower by increasing the depletion layer and could put the JFET in cut-off or pinch off region.

In the below image we can see the **saturation mode and pinch off mode** and we will be able to understand the **depletion layer became wider and the current flow becomes less**.

If we want to switch off a JFET we need to provide a negative gate to source voltage denoted as V_{GS} for an N-type JFET. For a P-type JFET, we need to provide positive V_{GS} .


JFET only works in the depletion mode, whereas MOSFETs have depletion mode and enhancement mode.

Lab Activity:

Task: 1

Construct the network as shown below using 2N4416. Insert the measured value of R.

Task: 2

Vary the $1M\Omega$ potentiometer until VGS =0V. Recall that ID=IDSS when VGS = 0V. Set VDS to 8V by varying the $5K\Omega$ potentiometer. Measure the Voltage VR.

VR=

Calculate the saturation Current from IDSS = ID = VR/R using the measured resistance value.

IDSS =

Task: 3

Maintain VDS at about 8V and reduce VGS until VR drops to 1mV at this level ID = VR/R =~0A compared to typical operating levels. Recalls that Vp is the voltage VGS that results in Id = 0mA. Record the pich off voltage below:

Vp =

Task: 4

Using the determined values of IDSS and Vp, find Id for VGS = 5V.

$$ID = IDSS \times (1 - \frac{VGS}{Vp})^2$$

$$ID =$$

Task: 5

This part of the experiment will determine the ID versus VDS characteristics for an n channel JFET.

- a) Using the network use in task 1, vary the two potentiometers until VGS =0V and VDS = 0V. Determine ID from ID= VR/R using the measured value of R and Record in Table 11.1
- **b)** Maintain VGS at 0V and increase VDS through 14V (in 1V steps) and record the calculated values of ID.
- c) Vary the $1M\Omega$ potentiometer until VGS =-1V. Maintaining VGS at this level vary VDS through the level of table and record the readings.
- **d**) Plot the

Table 11.1 JFET characteristics table

VGS (V)	0	-1	-2	-3	-4	-5
VDS (V)	ID (mA)	ID (mA)	ID (mA)	ID (mA)	ID (mA)	ID (mA)
0						
1						
2						
3						

4			
5			
6			
7			
8			
9			
10			
11			
12			
13			

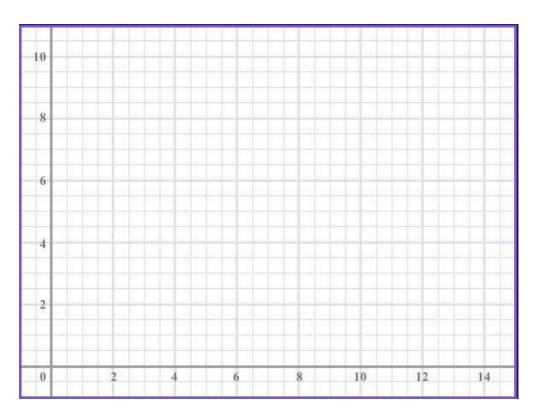


Figure 1 Transfer Characteristics of 2N4416

Lab Exercise and Summary

Summary should cover Introduction, Procedure, Data Analysis and Evaluation.

Student's Signature:	Date:

LABORATORY SKILLS ASSESMENT (Psychomotor) Total Marks: 100

Criteria (Max Marks)	Level 1 0% ≤ S < 50%	Level 2 50% ≤ S< 70%	Level 3 70% ≤ S< 90%	Level 4 90%≤ S ≤100%	Score (S)
Procedural	0 / 0 ≤ S < 30 / 0 Selects	Selects and	Selects and applies	Selects and	(3)
Awareness	inappropriate	applies	the appropriate	applies	
(20)	skills and/or	appropriate skills	strategies and/or	appropriate	
(20)	strategies	and/or strategies	skills specific to	strategies and/or	
	required by the	required by the	the task without	skills specific to	
	task	task with some	significant errors	the task without	
	task		significant errors		
Practical	Makes several	errors Makes few	Makes some non-	any error	
				Applies the	
Implementation	critical errors in	critical errors in	critical errors in	procedural	
(30)	applying	applying	applying	knowledge in	
	procedural	procedural	procedural	perfect ways	
	knowledge	knowledge related	knowledge related	related to DC	
	related to DC	to DC Analysis of	to DC Analysis of	Analysis of	
	Analysis of	Junction Field	Junction Field	Junction Field	
	Junction Field	Effect Transistor	Effect Transistor	Effect Transistor	
	Effect	(JFET)	(JFET)	(JFET)	
	Transistor				
	(JFET)				
Safety	Requires	Requires some	Follows safety	Routinely follows	
(10)	constant	reminders to	procedures with	safety procedures	
	reminders to	follow safety	only minimal		
	follow safety	procedures	reminders		
	procedures				
Use of	Uses tools,	Uses tools,	Uses tools,	Uses tools,	
Tool/Equipment	equipment and	equipment and	equipment and	equipment and	
(20)	materials with	materials with	materials with	materials with a	
	limited	some competence	considerable	high degree of	
	competence		competence	competence	
Participation	Shows little	Demonstrates	Demonstrates	Actively helps to	
to Achieve	commitment to	commitment to	commitment to	identify group	
Group Goals	group goals and	group goals, but	group goals and	goals and works	
(10)	fails to perform	has difficulty	carries out	effectively to	
	assigned roles	performing	assigned roles	meet them in all	
		assigned roles	effectively	roles assumed	
Interpersonal	Rarely interacts	Interacts with	Interacts with all	Interacts	
Skills in	positively	other group	group members	positively with all	
Group Work	within a group,	members if	spontaneously	group members	
(10)	even with	prompted	-	and encourages	
	prompting			such interaction in	
				others	
				Marks Obtained	

Instructor's Signature:	Date:

LABORATORY SKILLS ASSESMENT (Affective)

Total Marks: 40

Criteria (Max. Marks)	Level 1 0% ≤ S < 50%	Level 2 50% ≤ S < 70%	Level 3 70% ≤ S < 90%	Level 4 90% ≤ S ≤ 100%	Score (S)
Introduction (5)	Very little background information provided or information is incorrect	Introduction is brief with some minor mistakes	Introduction is nearly complete, missing some minor points	Introduction complete and well-written; provides all necessary background principles for the experiment	
Procedure (5)	Many stages of the procedure are not entered on the lab report.	Many stages of the procedure are entered on the lab report.	The procedure could be more efficiently designed but most stages of the procedure are entered on the lab report.	The procedure is well designed and all stages of the procedure are entered on the lab report.	
Data Record (10)	Data is brief and missing significant pieces of information.	Data provides some significant information and has few critical mistakes.	Data is almost complete but has some minor mistakes.	Data is complete and relevant. Tables with units are provided. Graphs are labeled. All questions are answered correctly.	
Data Analysis (10)	Data is presented in very unclear manner. Error analysis is not included.	Data is presented in ways (charts, tables, graphs) that are not clear enough. Error analysis is included.	Data is presented in ways (charts, tables, graphs) that can be understood and interpreted. Error analysis is included.	Data are presented in ways (charts, tables, graphs) that best facilitate understanding and interpretation. Error analysis is included.	
Report Quality (10)	Report contains many errors.	Report is somewhat organized with some spelling or grammatical errors.	Report is well organized and cohesive but contains some grammatical errors.	Report is well organized and cohesive and contains no grammatical errors. Presentation seems polished.	
				Marks Obtained	

LABORATORY SKILLS ASSESSMENT (Cognitive)

Total Marks	: 10

(If any) Marks Obtained			
Instructor's Signature:		Date:	